The Dual Activity Responsible for the Elongation and Branching of β-(1,3)-Glucan in the Fungal Cell Wall
نویسندگان
چکیده
β-(1,3)-Glucan, the major fungal cell wall component, ramifies through β-(1,6)-glycosidic linkages, which facilitates its binding with other cell wall components contributing to proper cell wall assembly. Using Saccharomyces cerevisiae as a model, we developed a protocol to quantify β-(1,6)-branching on β-(1,3)-glucan. Permeabilized S. cerevisiae and radiolabeled substrate UDP-(14C)glucose allowed us to determine branching kinetics. A screening aimed at identifying deletion mutants with reduced branching among them revealed only two, the bgl2Δ and gas1Δ mutants, showing 15% and 70% reductions in the branching, respectively, compared to the wild-type strain. Interestingly, a recombinant Gas1p introduced β-(1,6)-branching on the β-(1,3)-oligomers following its β-(1,3)-elongase activity. Sequential elongation and branching activity of Gas1p occurred on linear β-(1,3)-oligomers as well as Bgl2p-catalyzed products [short β-(1,3)-oligomers linked by a linear β-(1,6)-linkage]. The double S. cerevisiae gas1Δ bgl2Δ mutant showed a drastically sick phenotype. An ScGas1p ortholog, Gel4p from Aspergillus fumigatus, also showed dual β-(1,3)-glucan elongating and branching activity. Both ScGas1p and A. fumigatus Gel4p sequences are endowed with a carbohydrate binding module (CBM), CBM43, which was required for the dual β-(1,3)-glucan elongating and branching activity. Our report unravels the β-(1,3)-glucan branching mechanism, a phenomenon occurring during construction of the cell wall which is essential for fungal life.IMPORTANCE The fungal cell wall is essential for growth, morphogenesis, protection, and survival. In spite of being essential, cell wall biogenesis, especially the core β-(1,3)-glucan ramification, is poorly understood; the ramified β-(1,3)-glucan interconnects other cell wall components. Once linear β-(1,3)-glucan is synthesized by plasma membrane-bound glucan synthase, the subsequent event is its branching event in the cell wall space. Using Saccharomyces cerevisiae as a model, we identified GH72 and GH17 family glycosyltransferases, Gas1p and Bgl2p, respectively, involved in the β-(1,3)-glucan branching. The sick phenotype of the double Scgas1Δ bgl2Δ mutant suggested that β-(1,3)-glucan branching is essential. In addition to ScGas1p, GH72 family ScGas2p and Aspergillus fumigatus Gel4p, having CBM43 in their sequences, showed dual β-(1,3)-glucan elongating and branching activity. Our report identifies the fungal cell wall β-(1,3)-glucan branching mechanism. The essentiality of β-(1,3)-glucan branching suggests that enzymes involved in the glucan branching could be exploited as antifungal targets.
منابع مشابه
Yeast and fungal cell-wall polysaccharides can self-assemble in vitro into an ultrastructure resembling in vivo yeast cell walls.
Polysaccharides account for more than 90% of the content of fungal cell walls, but the mechanism underlying the formation of the architecture of the cell walls, which consist of microfibrils embedded in an amorphous wall matrix, remains unknown. We used electron microscopy to investigate ten different fungal cell-wall polysaccharides to determine whether they could self-assemble into the fibril...
متن کاملβ-1,3-glucan modifying enzymes in Aspergillus fumigatus
In Aspergillus fumigatus like in other filamentous ascomycetes, β-1,3-glucan constitutes a prominent cell wall component being responsible for rigidity of the cell wall structure. In filamentous fungi, softening of the cell wall is absolutely required during conidial germination and hyphal branching. Because of the central structure of β-1,3-glucans, it is expected that β-1,3-glucanases play a ...
متن کاملThe β‐1,3‐glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium‐mediated plant infection
The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β-1,3-glucan glucanosy...
متن کاملInhibition of Trichoderma Species from Growth and Zoospore Production of Phytophthora Drechsleri and Their Effects on Hydrolytic Enzymes
Understanding the function of Trichoderma species in the control of Phytophthora drechsleri in pistachio orchards is very important. In this study, the effects of liquid extra-cellular secretions and volatile compounds secreted by 27 isolates of Trichoderma harzianum, T. crassum, T. koningii, T.aureoviride, T. asperellum, T. brevicompactum, T.longibrachiatum and T. virens were investigated on ...
متن کاملα-(1,4)-Amylase, but not α- and β-(1,3)-glucanases, may be responsible for the impaired growth and morphogenesis of Paracoccidioides brasiliensis induced by N-glycosylation inhibition
The cell wall of Paracoccidioides brasiliensis, which consists of a network of polysaccharides and glycoproteins, is essential for fungal pathogenesis. We have previously reported that N-glycosylation of proteins such as N-acetyl-β-D-glucosaminidase is required for the growth and morphogenesis of P. brasiliensis. In the present study, we investigated the influence of tunycamicin (TM)-mediated i...
متن کامل